The tasks of a PV inverter are as varied as they are demanding:
1. Low-loss conversion
One of the most important characteristics of an inverter is its conversion efficiency. This value indicates what proportion of the energy “inserted” as direct current comes back out in the form of alternating current. Modern devices can operated with an efficiency of around 98 percent.
2. Power optimization
The power characteristics curve of a PV module is strongly dependent on the radiation intensity and the temperature of the module – in other words, on values that continually change over the course of the day. For this reason, the inverter must find and continually observe the optimal operating point on the power characteristics curve, in order to “bring out” maximum power from the PV modules in every situation. The optimal operating point is called the "maximum power point" (MPP), and the search for, and tracking of, this MPP is correspondingly called "MPP tracking." MPP tracking is extremely important for the energy output of a PV plant.
3. Monitoring and securing
On the one hand, the inverter monitors the energy yield of the PV plant and signals any problems. On the other, it also monitors the power grid that it is connected to. Thus, in the event of a problem in the power grid, it must immediately disconnect the plant from the grid for reasons of safety or to help support the grid – depending on the requirements of the local grid operator.
In addition, in most cases the inverter has a device that can safely interrupt the current from the PV modules. Because PV modules are always live when light is shining on them, they cannot be switched off. If the inverter cable is disconnected during operation, this can lead to dangerous light arcs forming, which do not go out on account of the direct current. If the cutout device is integrated directly in the inverter, installation and wiring efforts are reduced considerably.
4. Communication
Communication interfaces on the inverter allow control and monitoring of all parameters, operational data, and yields. Data can be retrieved and parameters can be set for the inverter via a network connection, industrial fieldbus such as RS485, or wireless via SMA Bluetooth®. In most cases, data is retrieved through a data logger, which collects and prepares the data from several inverters and, if desired, transmits them to a free online data portal (e.g. Sunny Portal from SMA).
5. Temperature management
The temperature in the inverter housing also influences conversion efficiency. If it rises too much, the inverter has to reduce its power. Under some circumstances the available module power cannot be fully used.
On the one hand, the installation location affects the temperature – a constantly cool environment is ideal. On the other hand, it directly depends on the inverter operation: even an efficiency of 98 percent means a power loss of two percent –in form of heat. If the plant power is 10 kW, the maximum thermal capacity is still 200 W. Therefore, an efficient and reliable cooling system for the enclosure is very important – such as SMA’s “OptiCool” cooling concept. The optimum thermal layout of the components allows them to dissipate their heat directly to the environment, while the whole encasing acts as a heat sink at the same time. This allows the inverters to work at maximum rated capacity even at ambient temperatures of up to 50° C.
6. Protection
A weather-proof enclosure, ideally built in line with protective rating IP65, allows the inverter to be installed in any desired place outdoors. The advantage: the nearer to the modules the inverter can be installed, the lower the expenditure for the comparatively expensive DC wiring.
We expect smooth power generation from a solar photovoltaic (PV) system while sun shining. When the sun is out but the system doesn't generate electricity as per required capacity, then we consider the system as problematic. Solar photovoltaic (PV)...
Inverter is a power converter which converts Direct Current (DC) into Alternating Current (AC). As most of modern appliances operate on 120 volts AC, an inverter plays a key role for your solar power system. It can convert the low voltage DC to the 120...
A Solar System generally comprises of the following elements: Solar Panel, a Charge Controller, a Power Inverter, a Monitor and Electrical Distribution System. As seen with each other technologies each component has different manufacturers , quality,...
Factors Affecting Output Standard Test Conditions Solar modules produce DC electricity. The dc output of solar modules is rated by manufacturers under Standard Test Conditions (STC). These conditions are easily recreated in a factory, and allow for consistent...
The reduced cost of solar photo-voltaic panel has created interest in households to opt for a solar panel on their roof top we have been getting various inquiries for roof top system sizing. Typically a house requires an average load of 2KW and 8 hours...