Geothermal Energy
Green Energy

Geothermal Energy


The Earth as an Energy Source

The geothermal energy available from the Earth is potentially enormous. A United States Government energy agency estimates that the total energy available from global geothermal resources is approximately 15,000 times the energy contained in all the known oil and gas reserves in the world. Unlike solar and wind energy, the supply of geothermal energy is constant and doesn't vary with the time of day or change with the weather. Although geothermal energy may always be available when it is needed, like the other two sources it is not always availablewhere it is needed.

The Earth's core maintains temperatures in excess of 6000°K due to the heat generated by the gradual radioactive decay of the elements it contains. Modern estimates (Sclater 1981) for the total present rate of radioactive heat generation within the Earth are about 2 × 1013 W. This heat energy continuously flows outwards from the hot core due to conductive and convective flows of the molten mantle beneath the crust.
Estimates of the mean heat flux through the Earth's surface resulting from its radioactive core vary between 0.04 and 0.08 Watts per square meter. At the surface the heat dissipates into the atmosphere and space. This geothermal heat flow is trivial compared with the 1000 W/m2 of solar energy impinging on the surface of the Earth in the other direction from the Sun (1367 W/m2 at the outer surface of the atmosphere). Never the less it is sufficient to allow harvesting of geothermal energy on a commercial basis.

The diagram below shows the Earth's temperatures resulting from its internal heat generation and heat flows. The section on Solar Power describes the solar energy flows coming from external sources.

Geothermal Gradient

The Earth's Layers

 

Geothermal Gradient

The geothermal or temperature gradient is the rate of increase in temperature per unit depth in the Earth due to the outflow of heat from the centre..
The temperature gradient between the centre of the Earth and the outer limits of the atmosphere averages about 1°C per kilometre. The temperature gradient in the Earth's fluid layers, the magma, tend to be lower because the mobility of the molten rock tends to even out the temperature. This mobility however does not exist in the solid crust where temperature gradient is consequently much higher, typically between 25 °C and 30 °C per kilometre depending on the location and higher still in volcanic regions and along tectonic plate boundaries where seismic activity transports hot material to near the surface.

At depths of 10 kms in the Earth's crust therefore the temperature could be as high as 300 °C which makes practical energy capture possible.

Energy Harvesting

There are two main exploitable sources of geothermal energy. Hydrothermal systems, first demonstrated in 1904, used the naturally occurring hot water or steam trapped in or circulating through permeable rock, to drive steam powered electricity generators.
See History.
More recently, since 1970, technology has been developed to extract the heat from hot rock by artificially circulating water through the rock to produce super-heated water or steam to drive the generators.

For cost efficient electricity generation, suitable temperatures for hot water and steam range upwards from 120°C to 370°C. Such naturally occurring hydrothermal resources are not widely available and are found in only a few regions of the world where the Earth's crust is very thin, usually around the edges of the crustal tectonic plates. Geothermal electricity generating plants have been installed in over twenty countries with new installations planned in several more.
In shallow reservoirs or regions where the water or steam temperature may range between 21°C to 149°C and not be hot enough for efficient electricity generation, the hot water can be used directly for local heating applications.

Hydrothermal Systems - Geothermal Aquifers
Conventional hydrothermal systems make use of geothermal aquifers which are naturally occurring geological formations of permeable rock or unconsolidated sediment (gravel, sand, silt, or clay) in which water may accumulate, between layers of impermeable rock. Where these aquifers occur in fractured volcanic rocks where temperatures are relatively high near the surface or in non volcanic areas where the crustal heat flow is very high, the water temperature may be high enough to provide steam for powering a conventional prime mover driving an electricity generator.
The hot water can be extracted from these hydrothermal reservoirs using boreholes and, after the heat has been extracted, the cooled water is pumped back into the ground to maintain the water table and pressure. Energy from geothermal aquifers is not completely renewable since heat is usually extracted at a rate quicker than it is replenished by the surrounding rocks.

Hot Dry Rocks (HDR) Enhanced Geothermal Systems (EGS)
Hot rock systems extract energy from dry rocks with temperatures up to 1000°C deep in the Earth's crust, rather than from hydrothermal aquifers, but first the solid rock must be made permeable to allow the circulation of water into which the rocks give up some of their heat. Such Hot Dry Rock (HDR) systems need Enhanced Geothermal Systems (EGS) to extract the available energy and these involve much higher investments and exploration risks than extracting energy from naturally occurring hydrothermal reservoirs.

Like hydrothermal systems, practical HDR systems depend on particular natural geological formations. They need access to hot granite or similar rocks with temperatures of 250°C or more, maintained by the heat flow from the Earth's hot core and such high temperatures are normally found at depths of over 3 kms. The deeper the rock, the higher the temperature but current drilling technology limits the practical working depths to about 5 kms. The ideal geological formation also includes an insulating blanket of sedimentary rocks, particularly shales, siltstones and coal seams, on top of the hot granite which effectively entrap the heat from the granite preventing it from being dissipated. Water is used as the thermal fluid to get the heat out of the rock and to enable this, the solid granite must be broken up (fractured) to allow horizontal water flow through the hot rock layer, and equally important, to provide the largest possible surface area of the hot rock through which the heat can be transferred into the water.

The water circulation system needs at least two bore holes, an injection bore hole through which cold water is pumped at high pressure down into the hot rock layer and an extraction borehole through which the hot water is returned to the surface.
The fracturing of the hot rock is achieved by the injection of water from the surface under extremely high pressures. The water pressure forces open existing fractures in the hot rock, which do not completely close again when the water pressure is removed, creating a passage through the rock between the injection and extraction boreholes. This is not an easy process because the immense pressures due to the weight of the overlying rocks tends close up any gaps in the rock. Nevertheless this EGS hydro-fracturing stimulation technology is commonly used in the oil industry to improve flow rates by enhancing the permeabilities of the host rock.

Superheated water extracted from the hot rocks is pumped to the surface and used to power a conventional electricity generating plant.

The diagram below shows the main components of a geothermal power plant used to capture energy from hot dry rocks.
Hot Dry Rock System
In operation, cold water is pumped at high pressure down into the very high temperature fractured hot rock where it becomes superheated as it passes through the rock on its way to the extraction borehole(s).
The diagram shows a "binary system" in which hot water emerging from the borehole is directed through a heat exchanger and after giving up its heat the cooled water is recycled back down the injection borehole into the hot rock bed. The working fluid, a low boiling point liquid, circulating through the secondary circuit of the heat exchanger is vaporised by the heat extracted from the well water and used to drive the turbine.

    The available heat flow is given by :
    q = KΔT
              z
    Where
    q is the heat flow per square metre in W/m2
    Kt is the thermal conductivity of the rock in W/m/°C
    ΔT is the temperature difference in degrees Centigrade
    z is the thickness of the hot rocks layer in metres.
    Thus ΔT/z is the temperature gradient

Geothermal Energy Capture from Hot Rocks

Hot Rock Geothermal Generator
Diagram Source - Australian National University (Modified by Geothermal Resources Ltd)
The diagram below shows the temperature gradient in the Earth's crust at different locations.

Earth's Crust Temperature Profile

Source Geohil AG (Modified)
The temperature profile varies, depending on factors such as the porosity of the rock, the degree of liquid saturation of the rock and sediments, their thermal conductivity, their heat storage capacity and the vicinity of magma chambers or heated underground reservoirs of liquid.
Low temperature gradients mean that boreholes must be very deep to reach high temperature rock but because of the difficulties involved in deep drilling and extraction, high temperature gradients are needed to get heat from reasonable depths. Suitable conditions are only available in a few locations

A constant heat flow can be obtained from hot rocks but the heated water extracted from the rock is often full of debris and pollutants.

Although the fuel is free and the maintenance costs are low, the exploration risks, the capital costs are very high.

Ocean Thermal Energy Conversion (OTEC)

OTEC energy harvesting is similar to geothermal energy extraction described above except that the temperature gradient has an opposite slope. Sea water is heated by energy both from the Sun and from the Earth below. The solar energy falling on the water surface is greater than the heat flow emanating from the Earth so that the temperature at the surface is greater than the temperature in the depths of the water. OTEC systems convert the heat energy of the surface water into electrical energy using Binary Electric Generating Plants. (See below)

Geothermal Energy Conversion Systems


Water, Steam and Other Circuits
The thermal energy available from geothermal sources is harvested and used in various forms and equipment for utility scale geothermal power generation is available in capacities from as low as 100 kW.

See also the table of Energy Flows

See also Generators

Return to Electrical Energy Supply Overview





- Geothermal Energy The Power From Below!
"Geothermal" is from two Greek words – "geo" meaning the earth and "therme" meaning heat. "Energy" stems from the Greek word "ergon" - meaning work. Literally translated, geothermal energy is "the work of earth's heat".So what is geo-energy...

- Ocean Energy
What is Ocean Energy? All type of renewable energy which is acquired from the sea is called Ocean Energy. Constant flow of ocean currents contains huge amount of water across the earth's ocean. Technological development contributes to extract...

- Geothermal Energy
What is Geothermal Energy? Basically, geothermal energy is the technique of gaining heat as energy source from earth’s surface. In order to produce electricity, most power plants require steam. Geothermal power plants use steam which is produced from...

- Ocean Energy
The ocean can produce two types of energy: thermal energy from the sun's heat, and mechanical energy from the tides and waves. Oceans cover more than 70% of Earth's surface, making them the world's largest solar collectors. The sun's...

- Heat And Internal Energy
Heat is defined as the transfer of energy across the boundary of a system due to a temperature difference between the system and its surroundings. When you heat a substance, you are transferring energy into it by placing it in contact with surroundings...



Green Energy








.